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Abstract
Topological inhomogeneity gives rise to spectral anomalies that can induce
Bose–Einstein condensation (BEC) in low-dimensional systems. These
anomalies consist in energy regions composed of an infinite number of states
with vanishing weight in the thermodynamic limit (hidden states). Here we
present a rigorous result giving the most general conditions for BEC on complex
networks. We prove that the presence of hidden states in the lowest region of
the spectrum is the necessary and sufficient condition for condensation in low
dimension (spectral dimension d̄ � 2), while it is shown that BEC always
occurs for d̄ > 2.

PACS numbers: 03.75.Fi, 02.10.Ab, 02.40.-k

The recent experimental evidence for Bose–Einstein condensation (BEC) in real systems [1]
has stimulated an increasing amount of theoretical works to find the most general conditions
inducing such phenomenon in new experimental setups. A key problem in this analysis is the
influence of geometry on the physical behaviour of bosonic models. In the classical framework
of the ideal Bose gas this influence is encoded in the dependence on the space dimension d of
the system: indeed BEC occurs if and only if d � 3 [2].

Recently, the interest in quantum devices such as Josephson junctions, together with the
possibility of combining them in complex geometrical arrangements, has stimulated the study
of bosonic models on general discrete structures [3]. There, the problem of defining an effective
dimension describing large-scale topology has been successfully solved by the introduction of
spectral dimension d̄ [4,5], which can be experimentally measured [6] and rigorously defined
by graph theory [7]. On the other hand, one expects the influence of topology to be richer and
more complex on discrete structures, due to the possible relevance of local geometrical details,
in addition to the large-scale structure described by dimensionality.
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Figure 1. The comb graph and the spectrum of the pure hopping model (hij = −tAij ) defined on
this structure. The hidden spectrum is represented with dotted curves. In this case the spectrum is
obtained from an exact calculation in the thermodynamic limit. The energy is measured in units of
t and the zero has been chosen so that E0 = 0; the density is plotted in arbitrary units (the hidden
spectrum and ρ(E) can be normalized to 1 dividing respectively to the number of states belonging
to each spectral region).

In this direction, recent works on BEC on inhomogeneous networks [8] have put into
evidence that strong inhomogeneities can give rise to condensation at finite temperature even
in a low-dimensional system such as a comb lattice (d̄ = 1, see figure 1). This phenomenon
arises from a peculiarity of the spectra of inhomogeneous networks we shall refer to as hidden
spectrum, consisting of an energy region filled by a finite of infinite number of eigenvalues
which do not contribute to the normalized spectral density in the thermodynamic limit. Hidden
spectra do not usually affect bulk thermodynamic quantities but, as we shall show in the
following, can have dramatic effect when bosonic statistics forces the macroscopic occupation
of a single quantum state.

Here we give a general mathematical definition of hidden spectra and we prove that the
necessary and sufficient condition for condensation when d̄ � 2 is the presence of hidden
states in the lowest region of the energy spectrum, while BEC at finite temperature always
occurs for higher-dimensional systems (i.e. when d̄ > 2).

A generic discrete network is naturally described by a graph which is a countable set V of
vertices (sites) i connected pairwise by a set E of unorientated edges (links) (i, j) = (j, i). We
will call nearest neighbours two vertices joined by an edge. The graph topology is algebraically
described by its adjacency Aij = 1 if (i, j) is a link of the graph and Aij = 0 otherwise.
The coordination number zi = ∑

j Aij is the number of nearest neighbours of the site i.
A real geometrical structure always has a finite maximum number of nearest neighbours at
any site. To take into account this condition in the thermodynamic limit we introduce the
uniform boundedness condition: maxizi < ∞ on the coordination numbers. A path in G

is a sequence of consecutive links {(i, k), (k, h), . . . , (n,m), (m, k)} and a graph is said to
be connected if for any two point there is always a path joining them. In the following we
will consider only connected graphs; disconnected graphs can be reduced to non-interacting
connected components which can be studied separately. Every connected graph is endowed
with an intrinsic metric generated by the chemical distance ri,j , which is defined as the number
of links in the shortest path connecting sites i and j .
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The most general Hamiltonian for non-interacting particles on G is

H =
∑
i,j∈V

hij a
†
i aj (1)

where a
†
i and ai are the creation and annihilation operators at site i. The bosonic nature

of the particles is introduced through the usual commutation relations [ai, a
†
j ] = δij . The

Hamiltonian matrix hij is defined by

hij = tij + δijVi. (2)

The term tij describes hopping between nearest-neighbour sites and it is directly related to the
topology of the graph. Indeed tij �= 0 if and only if (i, j) ∈ E, i.e. Aij = 1. The diagonal
term Vi takes into account a potential at site i and both terms must satisfy a a boundedness
condition 0 < k < |tij | < K and 0 < c < |Vi | < C.

To introduce the thermodynamic limit and analyse the conditions for BEC on the graph,
we begin by studying models restricted to the Van Hove sphere Sr,o of centre o and radius r .
This is defined as the set of the vertices whose distance from o is equal or smaller than r . We
will call Nr,o the number of site in So,r . The Hamiltonian restricted to the sphere is

HSr,o =
∑
i,j∈V

h
Sr,o
ij a

†
i aj (3)

where h
Sr,o
ij = hij if i and j belong to the sphere and h

Sr,o
ij = 0 otherwise. For graphs

with polynomial growth, i.e. when Nr,o ∼ rp for r → ∞, it is possible to show that the
thermodynamic limit is independent from the choice of the centre of the sphere o [9]. In the
following we will consider only graphs with polynomial growth, since this is the necessary
condition to ensure that the structure can be embedded in a finite-dimensional space. We will
then write Hr = HSr,o , hr

ij = h
Sr,o
ij and Nr = Nr,o.

For each finite sphere of radius r the matrix hr
ij defines a normalized density of states

ρr(E) which is the sum of Nr δ-functions δ(E − Er
k), where Er

k are the eigenvalues of hr
ij .

The density ρr(E) will be normalized to 1/Nr .
In the thermodynamic limit, we define ρ(E) to be the spectral density of the eigenvalues

of hij if

lim
r→∞

∫
|ρr(E) − ρ(E)| dE = 0. (4)

Let us define Em ≡ Inf (Supp(ρ(E))) where Supp(ρ(E)) is the support of the distribution
ρ(E). The asymptotic behaviour of the thermodynamic spectral density in this region is
described by the spectral dimension d̄ [5]:

ρ(E) ∼ (E − Em)
d̄
2 −1 for E → Em. (5)

A hidden region of the spectrum is an energy interval [E1, E2] such that [E1, E2] ∩
Supp(ρ(E)) = ∅ and limr→∞ Nr

[E1,E2] > 0, where Nr
[E1,E2] is the number of eigenvalues

of hr
ij in the interval [E1, E2]. Notice that in general Nr

[E1,E2] can diverge for r → ∞ and
the eigenvalues can become dense in [E1, E2] in the thermodynamic limit. Therefore this
condition not only includes the trivial case of discrete spectrum but is far more general; an
interesting example of this new kind of behaviour has been observed in the comb lattice [8]
(figure 1), where the hidden region of the spectrum is filled by an infinite number of states.

We now define the lowest energy level for the sequence of densities ρr(E), setting
Er

0 = Infk(Er
k) and E0 = limr→∞ Er

0. In general, E0 � Em. If E0 < Em, then [E0, Em] is a
hidden region of the spectrum, which will be called the hidden low-energy spectrum.
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In the following we will consider models at fixed fillings f = N/Nr , where N represents
the number of particles in the system. In the macro-canonical ensemble the equation that
determines the fugacity z in the thermodynamic limit is

f = lim
r→∞

∫
ρr(E) dE

z−1eβE − 1
. (6)

Setting E0 = 0 we have that 0 � z � 1.
The integral in equation (6) can be divided into two sums, the first ones considering the

energies smaller than an arbitrary constant ε and the second the energies larger than ε:

∫
ρr(E) dE

z−1eβE − 1
=

Ek�ε∑
k=0

1

z−1eβE
r
k − 1

+
∫
E>ε

ρr(E) dE

z−1eβE − 1
. (7)

We define

nr
ε ≡

Ek�ε∑
k=0

1

z−1eβE
r
k − 1

(8)

as the fraction of particles with energy smaller than ε. BEC occurs in this systems if there
exists a critical temperature Tc > 0 such that, for any T < Tc, nε ≡ limr→∞ nr

ε > k > 0, for
all ε > 0; i.e. n0 ≡ limε→0 nε = k > 0.

From the definition (8), n0 can be strictly positive only if limr→∞ z(r) = 1. Indeed, if
this limit is smaller than 1 it follows that nε � (1 − z)−1 limr→∞ Nr

ε /N
r where Nr

ε is the
number of state with energy smaller than ε. If the ground state is not infinitely degenerate,
limε→0 limr→∞(Nr

ε /N
r) = 0 and then n0 = 0.

Taking first the limit r → ∞ and then ε → 0 in equation (7) we obtain

f = n0 + lim
ε→0

lim
r→∞

∫
E>ε

(ρr(E) − ρ(E)) dE

z−1eβE − 1
+ lim

ε→0
lim
r→∞

∫
E>ε

ρ(E) dE

z−1eβE − 1
. (9)

Now, from the boundedness of (z−1eβE − 1)−1 for E > ε and from the definition (4), the
first of the two limits in the right-hand side of (9) vanishes:

f = n0 + lim
ε→0

∫
E>ε

ρ(E) dE

z−1eβE − 1
= n0 +

∫
ρ(E) dE

z−1eβE − 1
(10)

where, again, n0 can be different from 0 only if z = 1.
Now the integral in equation (10) is an increasing continuous function of z with 0 � z < 1.

If the limit

fc(β) = lim
z→1

∫
ρ(E) dE

z−1eβE − 1
(11)

is equal to ∞ we have z < 1 and n0 = 0. If the limit is finite, fc(β) is a decreasing function
of β with limβ→∞ fc(β) = 0 and limβ→0 fc(β) = ∞. Then, for a suitable βC , fc(βC) = f .
For β > βC , (i.e. T < TC) z = 1 and n0 = f − fc(β) > 0 while for β < βC , (i.e. T > TC)
z < 1 and n0 = 0.

From the divergence or finiteness of the limit (11) one obtains the most general conditions
for the occurrence of BEC.

First, if 0 = E0 < Em (i.e. the system presents a low-energy hidden spectrum) the
limit (11) is finite and there is BEC at finite temperature:

fc(β) � 1

eβEm − 1

∫
ρ(E) dE = 1

eβEm − 1
. (12)
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Figure 2. Two classical examples of exactly decimable graph: the three-dimensional Sierpinski
gasket (d̄ = 2 ln(4)/ ln(6) < 2) and the T -fractal (d̄ = 2 ln(3)/ ln(6) < 2).

On the other hand, when E0 = Em the value of the limit (11) is determined by the spectral
dimension d̄ . Indeed if d̄ > 2

fc(β) �
∫ δ

0

c1E
d̄
2 −1 dE

βE
+

∫
E>δ

ρ(E) dE

eβE − 1
< ∞ (13)

where δ and c1 are suitable constants. Therefore in this case BEC occurs at finite temperature.
For d < 2 we have

fc(β) � lim
z→1

∫ δ

0

zc1E
d̄
2 −1 dE

βE + 1 − z
= ∞ (14)

and there is no BEC. When d̄ = 2 we have to consider the logarithmic correction to (5) and it
is possible to show that the limit (11) diverges.

This result applies to many different situations. The simplest example is the discretization
of the usual Schrödinger equation for free particles on a graph. In this case the Hamiltonian
is given by hij = h̄2

2mLij . Lij is the Laplacian operator on the graph Lij = ziδij − Aij . It can
be shown that E0 = Em and therefore the occurrence of BEC is determined by the behaviour
of the spectrum of Lij at low eigenvalues, described by the spectral dimension as in (5). d̄ is
known for a wide class of structures [7,10,11]: for lattices it coincides with the usual Euclidean
dimension and for exactly decimable graph (the Sierpinski gasket [10] and the T -fractal are
illustrated in figure 2) it can be proven [7] that d̄ < 2.

A more important model, relevant for real condensed matter structures, is a pure hopping
of non-interacting bosons on graphs. This has been considered in [8] for the description
of the Josephson junction arrays in the weak coupling limit. In this case the Hamiltonian
matrix is given by hij = −tAij . A relevant point about the application of our result to real
systems concerns the effects of the introduction of a fluctuating local potential. Indeed it can
be shown [12] that in presence of a hidden spectrum giving rise to BEC, the existence of a
condensate is not affected by the introduction of a small enough potential.

Let us now focus on the pure hopping model described by the Hamiltonian hij = −tAij

where the only effects are due to topology, to show how the general theorem can be applied to
a wide class of discrete structures. Condensation at finite temperature due to the presence of
low-energy hidden states is typical of bundle structures [11]. These graphs are obtained by a
‘fibring’ procedure, i.e. attaching the origin site of copy of a graph we will call the ‘fibre’ graph,
to every point of another graph called ‘base’. An example is the brush graph, shown in figure 3,
where the base (the two-dimensional lattice) is fibred by a linear chain. On bundled structures
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Figure 3. The brush graph and the spectrum of the pure hopping model on this graph (obtained
from the diagonalization of a structure of 200 × 200 × 200 sites). The dotted curves represent the
hidden spectrum which gives rise to condensation even if the spectral dimension is 1.

the spectrum ρ(E) is simply given by the spectrum of the pure hopping model on the fibre
but the inhomogeneities due to the base give rise to a low-energy hidden spectrum. Moreover,
the wavefunction of the condensate is localized along the base and presents a fast decay along
the fibres. This result can be in general obtained by first diagonalizing the Hamiltonian of
a pure hopping model defined on the base and then solving the eigenvalues problem of the
Hamiltonian of the fibre with a suitable impurity in the origin, whose form depends on the
result of the previous diagonalization (see [8] for a detailed application of this techniques to the
comb graph). In the case of the brush graph Em = √

(20)− 2 ≈ 2.47 > E0 = 0 (in all figures
the energy is measured in t units and the energy zero has been chosen so that E0 = 0), so that
we can apply the general result for low-energy hidden spectra. In the figure the continuous
curve is ρ(E) and it coincides with the density of states of the hopping model on a linear chain
(the fibre). The dotted curve represents the hidden spectral region, which is filled continuously
by the hidden states. Since on the comb graph the fraction of states in the hidden spectral
region goes to zero as 1/N1/3

r for r → ∞, in order to obtain the dotted curves we have to
normalize ρr(E) dividing by N

2/3
r and not by the total number of sites in the sphere.

Graphs with constant coordination number zi are typical examples in which the pure
hopping model do not present hidden low energy regions (E0 = Em). This is due to the fact
that for this class of graphs the spectrum of the model can be obtained from that of the Laplacian
matrix by a shift of the zero in the energy. The existence of BEC is therefore determined by the
spectral dimension d̄ of the graph. This parameter can be exactly calculated for a wide class
of discrete structures. On lattices, d̄ = d is the usual Euclidean dimension and one recovers
the classical result for BEC on translation invariant structures. The d-dimensional Sierpinski
gaskets [10] (see figure 2) are example of exactly decimable graphs with constant coordination
number. Since for these graphs d̄ < 2, our general result proves that in these cases no BEC
occurs.

A fundamental property of the low eigenvalues spectral density of the Laplacian matrix
is its independence from the local details of the graph, i.e. geometrical universality [5]. The
value of d̄ is not changed under a wide class of transformations, called isospectralities, which
can strongly modify the geometry of the graph. A simple consequence of this property is that
if we consider the pure hopping model on a graph with constant coordination number, which
differs from a graph of known dimension d̄ by an isospectrality, BEC occurs only if d̄ > 2.
An example of this behaviour is given by the ladder graph (figure 4) which can be obtained
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Figure 4. The ladder graph and the spectrum of the pure hopping model obtained from an exact
diagonalization in the thermodynamic limit. Here there is no hidden spectrum and ρ(E) → ∞
when E → Em = E0 (d̄ = 1), then there is no condensation at finite temperature.
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Figure 5. The graph obtained as a product of the Sierpinski gasket and a linear chain. Here the
spectrum of the pure hopping model is obtained from the diagonalization of a graph of 840 192
sites. Here condensation occurs since d̄ = 1 + 2 ln(3)/ ln(4) > 2 (indeed the spectral vanishes for
E → Em = E0).

from the linear chain by the addition of finite-range links, which is one of the simplest cases
of isospectralities. On this structure then there is no low-energy hidden spectrum, d̄ = 1 and
the pure hopping model does not exhibit BEC.

An important property of d̄ is that the dimension of the graph obtained as a direct product
of two graphs is the sum of the dimensions of the original structures. An example is illustrated
in figure 5, where we show the direct product of a linear chain and a well known fractal, a
Sierpinski gasket. In this case the coordination number zi is constant. Applying this property
of bard it is easy to show that d̄ = 1 + 2 ln(3)/ ln(4) > 2, and therefore one immediately
infers that BEC occurs on this graph. Interestingly, in this case we do not know the analytical
form of the spectrum of the Hamiltonian (the spectral density in the figure is obtained by a
numerical diagonalization), nevertheless we can prove the existence of BEC from the general
theorem and from the properties of d̄ .
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